跳跃表(skiplist)是一种随机化的数据, 由 William Pugh 在论文《Skip lists: a probabilistic alternative to balanced trees》中提出, 跳跃表以有序的方式在层次化的链表中保存元素, 效率和平衡树媲美 —— 查找、删除、添加等操作都可以在对数期望时间下完成, 并且比起平衡树来说, 跳跃表的实现要简单直观得多。
# redis 中的 skiplist 结构
/* ZSETs use a specialized version of Skiplists */
typedef struct zskiplistNode {
sds ele;
double score;
struct zskiplistNode *backward;
struct zskiplistLevel {
struct zskiplistNode *forward;
unsigned long span;
} level[];
} zskiplistNode;
typedef struct zskiplist {
struct zskiplistNode *header, *tail;
unsigned long length;
int level;
} zskiplist;
typedef struct zset {
dict *dict;
zskiplist *zsl;
} zset;
NOTE: 可以看到 zset 不止有 skiplist,还包含了一个 dict 结构,这是为了 ZSCORE 等命令可以以 o (1) 的时间复杂度返回指定的成员。
zskiplistNode:
-
ele:保存数据
-
score:权重值
-
backward:指向链表前一个节点的指针,不在 level 数组中,只有第一层会用到。
-
level
-
forward:指向链表后一个节点的指针
-
span:保存当前节点跨越了多少个节点
zskiplist:
- head,tail:头指针和尾指针
- length:链表长度
- level:总层数
# skiplist 插入数据
/* Insert a new node in the skiplist. Assumes the element does not already
* exist (up to the caller to enforce that). The skiplist takes ownership
* of the passed SDS string 'ele'. */
zskiplistNode *zslInsert(zskiplist *zsl, double score, sds ele) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
unsigned int rank[ZSKIPLIST_MAXLEVEL];
int i, level;
serverAssert(!isnan(score));
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* store rank that is crossed to reach the insert position */
rank[i] = i == (zsl->level-1) ? 0 : rank[i+1];
while (x->level[i].forward &&
(x->level[i].forward->score < score ||
(x->level[i].forward->score == score &&
sdscmp(x->level[i].forward->ele,ele) < 0)))
{
rank[i] += x->level[i].span;
x = x->level[i].forward;
}
update[i] = x;
}
/* we assume the element is not already inside, since we allow duplicated
* scores, reinserting the same element should never happen since the
* caller of zslInsert() should test in the hash table if the element is
* already inside or not. */
level = zslRandomLevel();
if (level > zsl->level) {
for (i = zsl->level; i < level; i++) {
rank[i] = 0;
update[i] = zsl->header;
update[i]->level[i].span = zsl->length;
}
zsl->level = level;
}
x = zslCreateNode(level,score,ele);
for (i = 0; i < level; i++) {
x->level[i].forward = update[i]->level[i].forward;
update[i]->level[i].forward = x;
/* update span covered by update[i] as x is inserted here */
x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]);
update[i]->level[i].span = (rank[0] - rank[i]) + 1;
}
/* increment span for untouched levels */
for (i = level; i < zsl->level; i++) {
update[i]->level[i].span++;
}
x->backward = (update[0] == zsl->header) ? NULL : update[0];
if (x->level[0].forward)
x->level[0].forward->backward = x;
else
zsl->tail = x;
zsl->length++;
return x;
}
这里面比较复杂的点在于 span 的操作,其实去掉 span 就是很简单的链表操作,为了便于理解,这里把 backward 的操作和 span 的操作都删掉:
zskiplistNode *zslInsert(zskiplist *zsl, double score, sds ele) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
int i, level;
serverAssert(!isnan(score));
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward &&
(x->level[i].forward->score < score ||
(x->level[i].forward->score == score &&
sdscmp(x->level[i].forward->ele,ele) < 0)))
{
x = x->level[i].forward;
}
update[i] = x;
}
level = zslRandomLevel();
if (level > zsl->level) {
for (i = zsl->level; i < level; i++) {
update[i] = zsl->header;
}
zsl->level = level;
}
x = zslCreateNode(level,score,ele);
for (i = 0; i < level; i++) {
x->level[i].forward = update[i]->level[i].forward;
update[i]->level[i].forward = x;
}
zsl->length++;
return x;
}
- 声明用到的变量
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
int i, level;
- 计算插入点的位置
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward &&
(x->level[i].forward->score < score ||
(x->level[i].forward->score == score &&
sdscmp(x->level[i].forward->ele,ele) < 0)))
{
x = x->level[i].forward;
}
update[i] = x;
}
外层循环控制层级,从高到低;内层循环控制链表遍历,从左往右。